
Eden ASP

Eden ASP Team

May 01, 2023

CONTENTS:

1 Introduction into Eden ASP 3
1.1 Basic Concepts . 3

2 Building Applications 7
2.1 Setting up for Development . 7
2.2 About Templates . 11
2.3 About Controllers . 13
2.4 Implementing Templates . 17
2.5 Advanced Topics . 17

3 Reference Guide 19
3.1 The current Object . 19
3.2 Services . 19
3.3 Settings . 24
3.4 Built-in Data Models . 24
3.5 Standard CRUD Methods . 29
3.6 User Interface Elements . 39
3.7 Tools . 48

4 How to deploy Eden ASP applications 53

5 Extending Eden ASP 55
5.1 Implementing Controllers . 55
5.2 Implementing Data Models . 55
5.3 Adding new themes . 56
5.4 Adding new Form Widgets . 56

6 Indices and tables 57

Index 59

i

ii

Eden ASP

Eden ASP is a rapid application development (RAD) kit for web-based, database-driven humanitarian and emergency
management applications, originally derived from the Sahana Eden Humanitarian Management Platform.

Eden ASP builds on the web2py web application framework, and is written in the Python programming language
(version 3.6+). It also uses HTML5, JavaScript, and SCSS to generate web contents, as well as XSLT to handle certain
data formats.

This documentation is aimed at application developers, and included in the source code.

CONTENTS: 1

Eden ASP

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION INTO EDEN ASP

1.1 Basic Concepts

This page explains the basic concepts, structure and operations of Eden ASP, and introduces the fundamental termi-
nology used throughout this documentation.

1.1.1 Client and Server

Eden ASP is a web application, which means it is run as a server program and is accessed remotely by client programs
connected over the network.

Most of the time, the client program will be a web browser - but it could also be a mobile app, or another type of
program accessing web services. Many clients can be connected to the server at the same time.

Client and server communicate using the HTTP protocol, in which the client sends a request to the server, the server
processes the request and produces a response (e.g. a HTML page) that is sent back to the client, and then the client
processes the response (e.g. by rendering the HTML page on the screen).

Note: Responding to HTTP requests is Eden ASP’s fundamental mode of operation.

1.1.2 Web2Py and PyDAL

Eden ASP builds on the web2py web application framework, which consists of three basic components: a HTTP server,
the application runner and various libraries, and a database abstraction layer.

The HTTP server (also commonly called “web server”) manages client connections. Web2py comes with a built-in
HTTP server (Rocket), but production environments typically deploy a separate front-end HTTP server (e.g. nginx)
that connects to web2py through a WSGI plugin or service (e.g. uWSGI).

3

Eden ASP

The application runner (gluon) decodes the HTTP request, then calls certain Python functions in the Eden ASP
application with the request data as input, and from their output renders the HTTP response. Additionally, gluon
provides a number of libraries to generate interactive web contents and process user input.

The database abstraction layer (PyDAL) provides a generic interface to the database, as well as a mapping between
Python objects and the tables and records in the database (ORM, object-relational mapping). For production environ-
ments, the preferred database back-end is PostgreSQL with the PostGIS extension, but SQLite and MariaDB/MySQL
are also supported.

1.1.3 Application Structure

Web2py applications like Eden ASP implement the MVC (model-view-controller) application model, meaning that the
application code is separated in:

• models defining the data(base) structure,

• views implementing the user interface,

• controllers implementing the logic connecting models and views

This is somewhat reflected by the directory layout of Eden ASP:

Note: This directory layout can be somewhat misleading about where certain functionality can be found in the code:

The controllers directory contains Python scripts implementing the logic of the application. In Eden ASP, these con-
trollers delegate much of that logic to core modules.

The models directory contains Python scripts to configure the application and define the database structure. In Eden
ASP, the former is largely delegated to configuration templates, and the latter is reduced to the instantiation of a model
loader, which then loads the actual data models from s3db modules if and when they are actually needed.

1.1.4 The Request Cycle

Eden ASP runs in cycles triggered by incoming HTTP requests.

When an HTTP request is received, web2py parses and translates it into a global request object.

4 Chapter 1. Introduction into Eden ASP

Eden ASP

For instance, the request URI is translated like:

https://www.example.com/[application]/[controller]/[function]/[args]?[vars]

. . . and its elements stored as properties of the request object (e.g. request.controller and request.function).
These values determine which function of the application is to be executed.

Web2py also generates a global response object, which can be written to in order to set parameters for the eventual
HTTP response.

Web2py then runs the Eden ASP application:

1. executes all scripts in the models/ directory in lexical (ASCII) order.

2. executes the script in the controllers/ directory that corresponds to request.controller, and then calls the function
defined by that script that corresponds to request.function.

E.g. if request.controller is “dvr” and request.function is “person”, then the controllers/dvr.py script will be
executed, and then the person() function defined in that script will be invoked.

3. takes the output of the function call to compile the view template configured as response.view.

These three steps are commonly referred to as the request cycle.

1.1. Basic Concepts 5

Eden ASP

6 Chapter 1. Introduction into Eden ASP

CHAPTER

TWO

BUILDING APPLICATIONS

2.1 Setting up for Development

This page describes how you can set up a local Eden ASP instance for application development on your computer.

Note: This guide assumes that you are working in a Linux environment (shell commands are for bash).

If you are working with another operating system, you can still take this as a general guideline, but commands may be
different, and additional installation steps could be required.

Note: This guide further assumes that you have Python (version 3.6 or later) installed, which comes bundled with the
pip package installer - and that you are familiar with the Python programming language.

Additionally, you will need to have git installed.

2.1.1 Prerequisites

Eden ASP requires a couple of Python libraries, which can be installed with the pip installer.

As a minimum, lxml and python-dateutil must be installed:

sudo pip install lxml python-dateutil

The following are also required for normal operation:

sudo pip install pyparsing requests xlrd xlwt openpyxl reportlab shapely geopy

Some specialist functionality may require additional libraries, e.g.:

sudo pip install qrcode docx-mailmerge

Tip: The above commands use sudo pip to install the libraries globally. If you want to install them only in your home
directory, you can omit sudo.

7

https://git-scm.com/downloads

Eden ASP

2.1.2 Installing web2py

To install web2py, clone it directly from GitHub:

git clone --recursive https://github.com/web2py/web2py.git ~/web2py

Tip: You can of course choose any other target location than ~/web2py for the clone - just remember to use the correct
path in subsequent commands.

Change into the web2py directory, and reset the repository (including all submodules) to the supported stable version
(currently 2.24.1):

cd ~/web2py
git reset --hard 7685d373
git submodule update --recursive

2.1.3 Installing Eden ASP

To install Eden ASP, clone it directly from GitHub:

git clone --recursive https://github.com/aqmaster/eden-asp.git ~/eden

Tip: You can of course choose any other target location than ~/eden for the clone - just remember to use the correct
path in subsequent commands.

Configure Eden ASP as a web2py application by adding a symbolic link to the eden directory under
web2py/applications:

cd ~/web2py/applications
ln -s ~/eden eden

The name of this symbolic link (eden) becomes the web2py application name, and will later be used in URLs to access
the application.

Tip: You can also clone Eden ASP into the ~/web2py/applications/eden directory - then you will not need the symbolic
link.

2.1.4 Configuring Eden ASP

Before running Eden ASP the first time, you need to create a configuration file. To do so, copy the 000_config.py
template into Eden ASP’s models folder:

cd ~/eden
cp modules/templates/000_config.py models

Open the ~/eden/models/000_config.py file in an editor and adjust any settings as needed.

For development, you do not normally need to change anything, except setting the following to True (or removing the
line altogether):

8 Chapter 2. Building Applications

Eden ASP

Listing 1: Editing models/000_config.py

FINISHED_EDITING_CONFIG_FILE = True

That said, it normally makes sense to also turn on debug mode for development:

Listing 2: Editing models/000_config.py

settings.base.debug = True

2.1.5 First run

The first start of Eden ASP will set up the database, creating all tables and populating them with some data.

This is normally done by running the noop.py script in the web2py shell:

cd ~/web2py
python web2py.py -S eden -M -R applications/eden/static/scripts/tools/noop.py

This will give a console output similar to this:

Listing 3: Console output during first run

WARNING: S3Msg unresolved dependency: pyserial required for Serial port modem usage
WARNING: Setup unresolved dependency: ansible required for Setup Module
WARNING: Error when loading optional dependency: google-api-python-client
WARNING: Error when loading optional dependency: translate-toolkit

*** FIRST RUN - SETTING UP DATABASE ***

Setting Up System Roles...
Setting Up Scheduler Tasks...
Creating Database Tables (this can take a minute)...
Database Tables Created. (3.74 sec)

Please be patient whilst the database is populated...

Importing default/base...
Imports for default/base complete (1.99 sec)

Importing default...
Imports for default complete (5.20 sec)

Importing default/users...
Imports for default/users complete (0.04 sec)

Updating database...
Location Tree update completed (0.63 sec)
Demographic Data aggregation completed (0.01 sec)

Pre-populate complete (7.90 sec)

Creating indexes...
(continues on next page)

2.1. Setting up for Development 9

Eden ASP

(continued from previous page)

*** FIRST RUN COMPLETE ***

You can ignore the WARNING messages here about unresolved, optional dependencies.

2.1.6 Starting the server

In a development environment, we normally use the built-in HTTP server (Rocket) of web2py, which can be launched
with:

cd ~/web2py
python web2py.py --no_gui -a [password]

Replace [password] here with a password of your choosing - this password is needed to access web2py’s application
manager (e.g. to view error tickets).

Once the server is running, it will give you a localhost URL to access it:

Listing 4: Console output of web2py after launch

web2py Web Framework
Created by Massimo Di Pierro, Copyright 2007-2023
Version 2.24.1-stable+timestamp.2023.03.22.21.39.14
Database drivers available: sqlite3, MySQLdb, psycopg2, imaplib, pymysql, pyodbc

please visit:
http://127.0.0.1:8000/

use "kill -SIGTERM 10921" to shutdown the web2py server

Append the application name eden to the URL (http://127.0.0.1:8000/eden), and open that address in your web browser
to access Eden ASP.

The first run will have installed two demo user accounts, namely:

• admin@example.com (a user with the system administrator role)

• normaluser@example.com (an unprivileged user account)

. . . each with the password testing. So you can login and explore the functionality.

2.1.7 Using PostgreSQL

to be written

10 Chapter 2. Building Applications

http://127.0.0.1:8000/eden

Eden ASP

2.2 About Templates

2.2.1 Global Config

Many features and behaviors of Eden ASP can be controlled by settings.

These settings are stored in a global S3Config instance - which is accessible through current as cur-
rent.deployment_settings.

from gluon import current

settings = current.deployment_settings

Note: In the models and controllers context, current.deployment_settings is accessible simply as settings.

2.2.2 Deployment Settings

S3Config comes with meaningful defaults where possible.

However, some settings will need to be adjusted to configure the application for a particular system environment - or
to enable, disable, configure, customize or extend features in the specific context of the deployment.

This configuration happens in a machine-specific configuration file:

models/000_config.py

Note: models/000_config.py is not part of the code base, and must be created before the application can be started.
An annotated example can be found in the *modules/templates directory.

The configuration file is a Python script that is executed for every request cycle:

Listing 5: models/000_config.py (partial example)

-*- coding: utf-8 -*-

"""
Machine-specific settings

"""

Remove this line when this file is ready for 1st run
FINISHED_EDITING_CONFIG_FILE = True

Select the Template
settings.base.template = "MYAPP"

Database settings
settings.database.db_type = "postgres"
#settings.database.host = "localhost"
#settings.database.port = 3306
settings.database.database = "myapp"
#settings.database.username = "eden"

(continues on next page)

2.2. About Templates 11

Eden ASP

(continued from previous page)

#settings.database.password = "password"

Do we have a spatial DB available?
settings.gis.spatialdb = True

settings.base.migrate = True
#settings.base.fake_migrate = True

settings.base.debug = True
#settings.log.level = "WARNING"
#settings.log.console = False
#settings.log.logfile = None
#settings.log.caller_info = True

===
Import the settings from the Template
#
settings.import_template()

===
Over-rides to the Template may be done here
#
After 1st_run, set this for Production
#settings.base.prepopulate = 0

===
VERSION = 1

END ===

2.2.3 Templates

Deployment configurations use configuration templates, which provide pre-configured settings, customizations and
extensions suitable for a concrete deployment scenario. The example above highlights how these templates are applied.

Important: Implementing configuration templates is the primary strategy to build applications with Eden ASP.

Templates are Python packages located in the modules/templates directory:

Each template package must contain a module config.py which defines a config-function :

12 Chapter 2. Building Applications

Eden ASP

Listing 6: modules/templates/MYAPP/config.py

def config(settings):

T = current.T

settings.base.system_name = T("My Application")
settings.base.system_name_short = T("MyApp")

...

This config function is called from models/000_config.py (i.e. for every request cycle) with the cur-
rent.deployment_settings instance as parameter, so that it can modify the global settings as needed.

Note: The template directory must also contain an __init__.py file (which can be empty) in order to become a Python
package!

2.2.4 Cascading Templates

It is possible for a deployment configuration to apply multiple templates in a cascade, so that they complement each
other:

Listing 7: Cascading templates (in models/000_config.py)

Select the Template
settings.base.template = ("locations.DE", "MYAPP")

This is useful to separate e.g. locale-specific settings from use-case configurations, so that both can be reused indepen-
dently across multiple deployments.

2.3 About Controllers

Controllers are functions defined inside Python scripts in the controllers directory, which handle HTTP requests and
produce a response.

2.3.1 Basic Request Routing

Web2py maps the first three elements of the URL path to controllers as follows:

https:// server.domain.tld / application / controller / function

The application refers to the subdirectory in web2py’s application directory, which in the case of Eden ASP is normally
eden (it is possible to name it differently, however).

The controller refers to a Python script in the controllers directory inside the application, which is executed.

For instance:

https:// server.domain.tld / eden / my / page

2.3. About Controllers 13

Eden ASP

executes the script:

controllers / my.py

The function refers to a parameter-less function defined in the controller script, which is subsequently called. In the
example above, that would mean this function:

Listing 8: In controllers/my.py

def page():
...
return output

If the output format is HTML, the output of the controller function is further passed to the view compiler to render the
HTML which is then returned to the client in the HTTP response.

Every controller having its own URL also means that every page in the web GUI has its own controller - and Eden ASP
(like any web2py application) is a multi-page application (MPA). Therefore, in the context of the web GUI, the terms
“controller function” and “page” are often used synonymously.

That said, not every controller function actually produces a web page. Some controllers exclusively serve non-
interactive requests.

2.3.2 CRUD Controllers

The basic database functions create, read, update and delete (short: CRUD) are implemented in Eden ASP as one
generic function:

Listing 9: In controllers/my.py

def page():

return crud_controller()

This single function call automatically generates web forms to create and update records, displays filterable tables,
generates pivot table reports and more - including a generic RESTful API for non-interactive clients.

If called without parameters, crud_controller will interpret controller and function of the page URL as prefix and
name of the database table which to provide the functionality for, i.e. in the above example, CRUD functions would be
provided for the table my_page.

It is possible to override the default table, by passing prefix and name explicitly to crud_controller, e.g.:

14 Chapter 2. Building Applications

Eden ASP

Listing 10: In controllers/my.py

def page():

return crud_controller("org", "organisation")

. . .will provide CRUD functions for the org_organisation table instead.

2.3.3 Resources and Components

As explained above, a crud_controller is a database end-point that maps to a certain table or - depending on the request
- certain records in that table.

This context data set (consisting of a table and a query) is referred to as the resource addressed by the HTTP request
and served by the controller.

Apart from the data set in the primary table (called master), a resource can also include data in related tables that
reference the master (e.g. via foreign keys or link tables) and which have been declared (usually in the data model) as
components in the context of the master table.

An example for this would be addresses (component) of a person (master).

2.3.4 CRUD URLs and Methods

The crud_controller extends web2py’s URL schema with two additional path elements:

https:// server.domain.tld / a / c / f / record / method

Here, the record is the primary key (id) of a record in the table served by the crud_controller function - while the
method specifies how to access that record, e.g. read or update.

For instance, the following URL:

https:// server.domain.tld / eden / org / organisation / 4 / update

. . . accesses the workflow to update the record #4 in the org_organisation table (with HTTP GET to retrieve the update-
form, and POST to submit it and perform the update).

Without a record key, the URL accesses the table itself - as some methods, like create, only make sense in the table
context:

https:// server.domain.tld / eden / org / organisation / create

The crud_controller comes pre-configured with a number of standard methods, including:

2.3. About Controllers 15

Eden ASP

Method Target Description
create Table Create a new record (form)
read Record View a record (read-only representation)
update Record Update a record (form)
delete Record Delete a record
list Table A tabular view of records
report Table Pivot table report with charts
timeplot Table Statistics over a time axis
map Table Show location context of records on a map
summary Table Meta-method with list, report, map on the same page (tabs)
import Table Import records from spreadsheets
organize Table Calendar-based manipulation of records

Note: Both models and templates can extend the crud_controller by adding further methods, or overriding the standard
methods with specific implementations.

2.3.5 Default REST API

If no method is specified in the URL, then the crud_controller will treat the request as RESTful - i.e. the HTTP verb
(GET, PUT, POST or DELETE) determines the access method, e.g.:

GET https:// server.domain.tld / eden / org / organisation / 3.xml

. . . produces a XML representation of the record #3 in the org_organisation table. A POST request to the same URL,
with XML data in the request body, will update the record.

This REST API is a simpler, lower-level interface that is primarily used by certain client-side scripts, e.g. the map
viewer. It does not implement complete CRUD workflows, but rather each function individually (stateless).

Note: A data format extension in the URL is required for the REST API, as it can produce and process multiple data
formats (extensible). Without extension, HTML format will be assumed and one of the interactive read, update, delete
or list methods will be chosen to handle the request instead.

The default REST API could be used to integrate Eden ASP with other applications, but normally such integrations
require process-specific end points (rather than just database end points) - which would be implemented as explicit
methods instead.

2.3.6 Component URLs

URLs served by a crud_controller can also directly address a component. For that, the record parameter would be
extended like:

https:// server.domain.tld / a / c / f / record / component / method

Here, the component is the declared name (alias) of the component in the context of the master table - usually the
name of the component table without prefix, e.g.:

https:// server.domain.tld / eden / pr / person / 16 / address

16 Chapter 2. Building Applications

Eden ASP

. . .would produce a list of all addresses (pr_address table) that are related to the pr_person record #16. Similar, replac-
ing list with create would access the workflow to create new addresses in the context of that person record.

Note: The /list method can be omitted here - if the end-point is a table rather than a single record, then the
crud_controller will automatically apply the list method for interactive data formats.

To access a particular record in a component, the primary key (id) of the component record can be appended, as in:

https:// server.domain.tld / eden / pr / person / 16 / address / 2 / read

. . . to read the pr_address record #2 in the context of the pr_person record #16 (if the specified component record does
not reference that master record, the request will result in a HTTP 404 status).

Note: The default REST API always serves the master table, even if the URL addresses a component (however, the
XML/JSON will include the component).

2.4 Implementing Templates

2.4.1 Settings

2.4.2 Customising resources

2.4.3 Customising controllers

2.4.4 Pre-populating data

2.4.5 Menus

2.4.6 Configuring Auth

2.5 Advanced Topics

2.5.1 Themes

2.5.2 Models in templates

2.5.3 Re-routing controllers

2.4. Implementing Templates 17

Eden ASP

18 Chapter 2. Building Applications

CHAPTER

THREE

REFERENCE GUIDE

3.1 The current Object

The current object holds thread-local global variables. It can be imported into any context:

from gluon import current

Table 1: Objects accessible through current
Attribute Type Explanation
current.db DAL the database
current.s3db DataModel the model loader
current.deployment_settings S3Config deployment settings
current.auth AuthS3 global authentication/authorisation service
current.gis GIS global GIS service
current.msg S3Msg global messaging service
current.xml S3XML global XML decoder/encoder service
current.request Request web2py’s global request object
current.response Response web2py’s global response object
current.T TranslatorFactory String Translator (for i18n)
current.messages Messages Common labels (internationalised)
current.ERROR Messages Common error messages (internationalised)

3.2 Services

Services are thread-local global singleton objects, instantiated during the models run.

They can be accessed through current , e.g.:

from gluon import current

s3db = current.s3db

This section describes the services, and their most relevant functions.

19

Eden ASP

3.2.1 Model Loader s3db

The s3db model loader provides access to database tables and other named objects defined in dynamically loaded
models.

The model loader can be accessed through current:

from gluon import current

s3db = current.s3db

Accessing Tables and Objects

A table or other object defined in a dynamically loaded data model can be accessed by name either as attribute or as
key of current.s3db:

Listing 1: Example: accessing the org_organisation table using attribute-
pattern

table = s3db.org_organisation

Listing 2: Example: accessing the org_organisation table using key-
pattern

tablename = "org_organisation"
table = s3db[tablename]

Either pattern will raise an AttributeError if the table or object is not defined, e.g. when the module is disabled.

Both access methods build on the lower-level table() method:

s3db.table(tablename, default=None, db_only=False)
Access a named object (usually a Table instance) defined in a dynamically loaded model.

Parameters

• tablename (str) – the name of the table (or object)

• default – the default to return if the table (or object) is not defined

• db_only (bool) – return only Table instances, not other objects with the given name

Note: If an Exception instance is passed as default, it will be raised rather than returned.

Table Settings

Table settings are used to configure entity-specific behaviors, e.g. forms, list fields, CRUD callbacks and access rules.
The following functions can be used to manage table settings:

s3db.configure(tablename, **attr)
Add or modify table settings.

Parameters

• tablename (str) – the name of the table

20 Chapter 3. Reference Guide

Eden ASP

• attr – table settings as key-value pairs

Listing 3: Example: configuring table settings

s3db.configure("org_organisation",
insertable = False,
list_fields = ["name", "acronym", "website"],
)

s3db.get_config(tablename, key, default=None)
Inspect table settings.

Parameters

• tablename (str) – the name of the table

• key (str) – the settings-key

• default – the default value if setting is not defined for the table

Returns
the current value of the setting, or default

Listing 4: Example: inspecting table settings

if s3db.get_config("org_organisation", "insertable", True):
...

else:
...

s3db.clear_config(tablename, *keys)
Remove table settings.

Parameters

• tablename (str) – the name of the table

• keys – the keys for the settings to remove

Listing 5: Example: removing table settings

s3db.clear_config("org_organisation", "list_fields")

Warning: If clear_config is called without keys, all settings for the table will be removed!

Declaring Components

The add_components method can be used to declare components.

s3db.add_components(tablename, **links)
Declare components for a table.

Parameters

• tablename (str) – the name of the table

• links – component links

3.2. Services 21

Eden ASP

Listing 6: Example: declaring components

s3db.add_components("org_organisation",

A 1:n component with foreign key
org_office = "organisation_id",

A 1:n component with foreign key, single entry
org_facility = {"joinby": "organisation_id",

"multiple": False,
},

A m:n component with link table
project_project = {"link": "project_organisation",

"joinby": "organisation_id",
"key": "project_id",
},

)

URL Method Handlers

s3db.set_method(tablename, component=None, method=None, action=None)
Configure a URL method for a table, or a component in the context of the table

Parameters

• tablename (str) – the name of the table

• component (str) – component alias

• method (str) – name of the method (to use in URLs)

• action – function or other callable to invoke for this method, receives the CRUDRequest
instance and controller keyword parameters as arguments

Listing 7: Example: defining and configuring a handler for a URL method
for a table

def check_in_func(r, **attr):
""" Handler for check_in method """

Produce some output...

Return output to view
return {}

Configure check_in_func as handler for the "check_in" method
(i.e. for URLs like /eden/pr/person/5/check_in):
s3db.set_method("pr_person", method="check_in", action=check_in_func)

Tip: If a CRUDMethod class is specified as action, it will be instantiated when the method is called (lazy instantiation).

22 Chapter 3. Reference Guide

Eden ASP

s3db.get_method(tablename, component=None, method=None)
Get the handler for a URL method for a table, or a component in the context of the table

Parameters

• tablename (str) – the name of the table

• component (str) – component alias

• method (str) – name of the method

Returns
the handler configured for the method (or None)

CRUD Callbacks

to be written

3.2.2 Authentication and Authorisation auth

Global authentication/authorisation service, accessible through current.auth.

from gluon import current

auth = current.auth

User Status and Roles

auth.s3_logged_in()

Check whether the user is logged in; attempts a HTTP Basic Auth login if not.

Returns bool
whether the user is logged in or not

auth.s3_has_role(role, for_pe=None, include_admin=True)
Check whether the user has a certain role.

Parameters

• role (str|int) – the UID/ID of the role

• for_pe (int) – the pe_id of a realm entity

• include_admin (bool) – return True for ADMIN even if role is not explicitly assigned

Returns bool
whether the user has the role (for the realm)

3.2. Services 23

Eden ASP

Access Permissions

Access methods:

Method Name Meaning
create create new records
read read records
update update existing records
delete delete records
review review unapproved records
approve approve records

auth.s3_has_permission(method, table, record_id=None, c=None, f=None):

Check whether the current user has permission to perform an action in the given context.

Parameters

• method (str) – the access method

• table (str|Table) – the table

• record_id (int) – the record ID

• c (str) – the controller name (if not specified, current.request.controller will be used)

• f (str) – the function name (if not specified, current.request.function will be used)

Returns bool
whether the intended action is permitted

3.2.3 Geospatial Information and Maps gis

3.2.4 Messaging msg

3.2.5 XML Encoder/Decoder xml

3.3 Settings

3.4 Built-in Data Models

3.4.1 Core Models

Core models form the basis of the Eden ASP database, defining base entities Persons, Organisations and Locations
that represent the fundamental elements of the user world.

These models are required for essential system functionality, and therefore cannot be disabled.

24 Chapter 3. Reference Guide

Eden ASP

Persons and Groups - pr

This data model describes individual persons and groups of persons.

Database Structure

3.4. Built-in Data Models 25

Eden ASP

Description

Table Type Description
pr_address Object Component Addresses
pr_contact Object Component Contact information (Email, Phone, . . .)
pr_group Main Entity Groups of persons
pr_group_member_role Taxonomy Role of the group member within the group
pr_group_membership Relationship Group membership
pr_group_status Taxonomy Status of the group
pr_group_tag Key-Value Tags for groups
pr_identity Component A person’s identities (ID documents)
pr_image Object Component Images (e.g. Photos)
pr_pentity Object Table (Super-Entity) All entities representing persons
pr_person Main Entity Individual persons
pr_person_details Subtable Additional fields for pr_person
pr_person_tag Key-Value Tags for persons
pr_person_user Link Table Link between a person and a user account

Organisations and Sites - org

to be written

Human Resources

to be written

User Accounts and Roles - auth

to be written

Geospatial Information and Maps - gis

to be written

Document Management - doc

to be written

3.4.2 Extensions

Extension models implement data elements for non-essential system functionality.

26 Chapter 3. Reference Guide

Eden ASP

Content Management

The Content Management System (cms) is a place to store all kinds of user-editable contents. Its main entity is the Post
(=content item), which can be linked to various core entities. Posts are also DocEntities, i.e. can have attachments.

The CMS was originally designed for news and discussion feeds, but is more commonly used for informative page
contents including, but not limited to:

• page intros

• legal, contact and privacy information pages

• guidance on forms or form elements

• group announcements

• online user guides

. . . as well as for notification templates.

Deployment Settings

to be written

Project Tracking

The main purpose of the project module is to track contexts of project-based business activities and collaboration.

Projects can be both multi-location and multi-organisation, through qualified links describing exactly how the respec-
tive location or organisation is involved.

Activities represent concrete actions within a project, with place, time and type.

Various categories are available for both activities and projects, e.g. themes, sectors, and hazards addressed.

Additionally, the module provides a basic task management, which can also be used standalone for simple TODO lists.

3.4. Built-in Data Models 27

Eden ASP

Deployment Settings

to be written

3.4.3 Business Data Models

The models implement data structures for specific business cases. Typically, they have been developed for actual
deployments, and then (often only partially) generalized.

Note: Some of these models may be under active development, and thus this documentation not always fully up-to-date
- please study the current code before planning your project.

Disease Tracking

This module implements data elements to track disease outbreaks, both on the individual case level, and in mass
testing. It was originally developed for Ebola Virus Disease outbreaks, and has later been re-used during the COVID-
19 pandemic.

28 Chapter 3. Reference Guide

Eden ASP

Training Courses and Events

to be written

3.5 Standard CRUD Methods

3.5.1 Data Tables

Tabular view of records (end-point: /list, and default for table end-point without method and interactive data format).

Fig. 1: Data Table View with Filter Form

3.5.2 Form-based CRUD

Simple, form-based Create, Read, Update and Delete functions.

Create

End-point: /create

3.5. Standard CRUD Methods 29

Eden ASP

Fig. 2: Create-form

Read

End-point: [id]/read

Update

End-point: [id]/update

Delete

End-point: [id]/delete

3.5.3 Map

Filterable Map (end-point: /map).

30 Chapter 3. Reference Guide

Eden ASP

Fig. 3: Read view with component tabs

Fig. 4: Update-form on tab

3.5. Standard CRUD Methods 31

Eden ASP

Fig. 5: Map with filter form

3.5.4 Pivottable Reports

User-definable pivot tables with chart option (end-point: /report).

Note: This method requires configuration.

3.5.5 Timeplot

Aggregation and visualisation of one or more numeric facts over a time axis (endpoint: /timeplot).

Configuration

The timeplot_options table setting is used to configure the report:

Listing 8: Example of timeplot_options configuration

facts = [(T("Number of Tests"), "sum(tests_total)"),
(T("Number of Positive Test Results"), "sum(tests_positive)"),
(T("Number of Reports"), "count(id)"),
]

timeframes = [("All up to now", "", "", ""),
(continues on next page)

32 Chapter 3. Reference Guide

Eden ASP

Fig. 6: Pivot Table Report

Fig. 7: Pivot Table with Chart

3.5. Standard CRUD Methods 33

Eden ASP

34 Chapter 3. Reference Guide

Eden ASP

(continued from previous page)

("Last 6 Months", "-6months", "", "weeks"),
("Last 3 Months", "-3months", "", "weeks"),
("Last Month", "-1month", "", "days"),
("Last Week", "-1week", "", "days"),
]

timeplot_options = {
"facts": facts,
"timestamp": [(T("per interval"), "date,date"),

(T("cumulative"), "date"),
],

"time": timeframes,
"defaults": {"fact": facts[:2],

"timestamp": "date,date",
"time": timeframes[-1],
},

}

s3db.configure("disease_testing_report",
timeplot_options = timeplot_options,
)

The attributes of the timeplot_options setting are as follows:

3.5. Standard CRUD Methods 35

Eden ASP

Option Type Explanation
facts list The selectable facts as tuples (label,

expression)
timestamp list

Selectable time stamps as tuples
(label, expr)

If expr contains two
comma-separated field selectors, it
is
interpreted as “start,end”.

If expr is a single field selector, it is
interpreted as
start date; in this case events are
treated as open-ended,
and hence facts cumulating over
time.

time list

List of time frames as tuples (label,
start, end, slots)

start and end can be either absolute
dates (ISO-format),
or relative date expressions, or "".

A relative start is relative to now.

A relative end is relative to start, or,
if no start
is specified, it is relative to now.

start "" means the date of the
earliest recorded
event, end "" means now.

The slots length is the default for
the time frame, but can
be overridden with an explicit
slot-selector (see below).

slots list

List of tuples (label, expr)

A separate selector for the slot
length is rendered only if
this option is configured.

Otherwise, the slot length is fixed to
that specified by the
selected time frame option.

defaults dict

Default values for the timeplot
options

Same attributes as the top-level
attributes, each taking a
single item of the respective list
(except fact, which
accepts a list).

36 Chapter 3. Reference Guide

Eden ASP

Relative Time Expressions

The start and end parameters for the time frame of the report support relative expressions of the form
[<|>][+|-]{n}[year|month|week|day|hour]s.

The n is an integer, e.g.:

"-1 year" # one year back
"+2 weeks" # two weeks onward

Additionally, the < and > markers can be added to indicate the start/end of the respective calendar period, e.g.:

"<-1 year" # one year back, 1st of January
">+2 weeks" # two weeks onward, Sunday

In this context, weeks go from Monday (first day) to Sunday (last day).

Note: Even when using < and > markers, the rule that end is relative to start still applies.

This can be confusing when using these markers for both interval ends, e.g. the time frame for January 1st to December
31st of last year is not:

("<-1 year", ">-1 year")

but actually:

("<-1 year", ">+0 years")

. . . namely, from the beginning of last year to the end of that same year.

More intuitive in this case is to specify: ("<-1 year", "+1 year").

3.5.6 Summary

Meta-method with multiple other methods on the same page (on tabs), and a common filter form (end-point: /summary).

Note: This method requires configuration.

3.5.7 Organizer

Calendar-based view and manipulation of records (end-point: /organize)

Note: This method requires configuration of start and end date fields, as well as of popup contents.

3.5. Standard CRUD Methods 37

Eden ASP

Fig. 8: Summary view with table, report and map tabs, and common filter form.

Fig. 9: Organizer (Weekly Agenda View)

38 Chapter 3. Reference Guide

Eden ASP

3.5.8 Spreadsheet Importer

Interactive Spreadsheet (CSV/XLS) Importer with review and record selection (end-point: /import).

Fig. 10: Spreadsheet Importer, Upload Dialog

Fig. 11: Spreadsheet Importer, Review and Record Selection

3.6 User Interface Elements

3.6.1 Form Widgets

3.6.2 Filter Widgets and Forms

3.6.3 DataTable

The DataTable widget represents a set of records as an interactive HTML table.

DataTables are one of the most common UI features in EdenASP, and a standard aspect of interactive CRUD.

3.6. User Interface Elements 39

Eden ASP

The DataTable class implements the server-side functions to configure, build and update a DataTable. The client-side
parts are implemented by the s3.ui.datatable.js script, using jQuery datatables.

Overview

class DataTable(rfields, data, table_id=None, orderby=None)

Parameters

• rfields – the table columns, [S3ResourceField, . . .]

• data – the data, [{colname: value, . . . }, . . .]

• table_id – the DOM ID for the <table> element

• orderby – the DAL orderby expression that was used to extract the data

Note: The first column should be the record ID.

html(totalrows, filteredrows, **attr)
Builds the data table HTML.

Parameters

• totalrows – total number of rows available

• filteredrows – total number of rows matching filters

• attr – build parameters

Returns
the HTML for the data table widget

Return type
FORM

json(totalrows, filteredrows, draw, **attr)
Builds a JSON object to update the data table.

Parameters

• totalrows – total number of rows available

• filteredrows – total number of rows matching filters

• draw – unaltered copy of “draw” parameter sent from the client

• attr – build parameters

Returns
the JSON data

Return type
str

40 Chapter 3. Reference Guide

Eden ASP

Example

Typically, DataTable views are implemented in CRUD methods.

The following example implements a DataTable view for the org_facility table, including server-side pagination and
Ajax-filtering, like this:

class FacilityList(CRUDMethod):

def apply_method(self, r, **attr):

get_vars = r.get_vars

Pagination

page_length = 25
if r.interactive:

Default limits when page is first loaded
- extracting twice the page length here to fill the cache,
so no Ajax-request is required for the first two pages
start, limit = 0, 2 * page_length

else:
Dynamic limits for subsequent Ajax-requests
start, limit = self._limits(get_vars, default_limit=page_length)

Extract the data, applying client-side filters/sorting

resource = current.s3db.resource("org_facility")
fields = ["id", "name", "organisation_id", "location_id"]

query, orderby, left = resource.datatable_filter(fields, get_vars)
if query is not None:

totalrows = resource.count()
resource.add_filter(query)

data = resource.select(fields,
start = start,
limit = limit,
left = left,
orderby = orderby,

(continues on next page)

3.6. User Interface Elements 41

Eden ASP

(continued from previous page)

count = True,
represent = True,
)

filteredrows = data.numrows
if query is None:

totalrows = filteredrows

Set up the DataTable

from core import DataTable
dt = DataTable(data.rfields, data.rows, "facility_list")

Configure row actions (before building the DataTable)

current.response.s3.actions = [{"label": "Read",
"url": URL(args = ["[id]", "read"]),
"_class": "action-btn"
},
]

Build the DataTable

Rendering parameters to pass to .html() and .json()
dtargs = {"dt_pagination": True,

"dt_pageLength": page_length,
"dt_base_url": URL(args=[], vars={}),
}

if r.interactive:
This is the initial page load request
- build the HTML:
dt_html = dt.html(totalrows, filteredrows, **dtargs)
output = {"items": dt_html}

elif r.representation == "aadata":
Client-side script uses the "aadata" extension to request updates
- generate a JSON response:
draw = int(r.get_vars.get("draw", 1))
output = dt.json(totalrows, filteredrows, draw, **dtargs)

else:
r.error(405, current.ERROR.BAD_FORMAT)

View template, includes dataTables.html
current.response.view = "list.html"

return output

42 Chapter 3. Reference Guide

Eden ASP

Note: The view template must include the dataTables.html template to add the necessary JavaScript for the DataTable
widget.

Build Parameters

Both build methods html() and json() accept the same set of keyword arguments to control the build of the DataTable.
Most of these arguments are optional (see example above for a typical minimum set).

Basic configuration

Basic parameters for the data table.

Keyword Type Default Explanation
dt_ajax_url str None URL for Ajax requests
dt_base_url str None Base URL for exports,

usually the resource de-
fault URL without any
method or query part

dt_dom str None

The jQuery datatable
“dom” option,
determines the order in
which elements are
displayed
- see https://datatables.
net/reference/option/dom

dt_formkey str None A form key (XSRF protec-
tion for Ajax requests)

3.6. User Interface Elements 43

https://datatables.net/reference/option/dom
https://datatables.net/reference/option/dom

Eden ASP

Pagination

Parameters for pagination (server-side pagination requires dt_ajax_url).

Keyword Type Default Explanation
dt_pagination bool True Enable/disable pagination
dt_pageLength int 25

Default number of
records that will be shown
per page
- the user can change this
using the length menu

dt_lengthMenu tuple [[25, 50, -1], [25, 50,
“All”]]

The menu options for the
page length

dt_pagingType str deployment setting

How the pagination
buttons are displayed
- set-
tings.ui.datatables_pagingType
(default full_numbers)
- see https:
//datatables.net/reference/
option/pagingType

Searching

Parameters to control the search box.

Keyword Type Default Explanation
dt_searching bool True Enable/disable search-field

Note: The search box should normally be disabled when using separate filter forms.

Row Actions

Keyword Type Default Explanation
dt_row_actions list None

list of actions (each a dict)
- overrides cur-
rent.response.s3.actions

dt_action_col int 0 The column where the ac-
tion buttons will be placed

44 Chapter 3. Reference Guide

https://datatables.net/reference/option/pagingType
https://datatables.net/reference/option/pagingType
https://datatables.net/reference/option/pagingType

Eden ASP

Bulk Actions

Bulk-action DataTable views render an additional column with checkboxes to select rows and then perform actions “in
bulk” for all selected rows with a single button click.

Fig. 12: Spreadsheet Importer: DataTable with bulk action column.

Keyword Type Default Explanation
dt_bulk_actions list None list of labels for the bulk

actions
dt_bulk_col int 0

The column in which the
checkboxes will appear,
- default: insert bulk
actions as first column

dt_bulk_single bool False allow only one row to be
selected

dt_bulk_selected list None list of (pre-)selected items

Note: Bulk-actions require server-side processing of the DataTable FORM upon submit.

3.6. User Interface Elements 45

Eden ASP

Grouping

Group table rows by column values.

Keyword Type Default Explanation
dt_group list None The column(s) that is(are)

used to group the data
dt_group_totals list None

The number of record in
each group.
- this will be displayed in
parenthesis after the
group title.

dt_group_titles list None

The titles to be used for
each group.
These are a list of lists
with the inner list
consisting of two values,
the repr from the
db and the label to
display. This can be more
than
the actual number of
groups (giving an empty
group).

dt_group_space bool False Insert a space between
the group heading and the
next group

dt_shrink_groups str None

If set then the rows within
a group will be hidden
two types are supported,
‘individual’ and
‘accordion’

dt_group_types str None

The type of indicator for
groups that can be
‘shrunk’
Permitted valies are:
‘icon’ (the default) ‘text’
and ‘none’

46 Chapter 3. Reference Guide

Eden ASP

Contents Rendering

Keyword Type Default Explanation
dt_text_maximum_len int 80 The maximum length of text before it is condensed
dt_text_condense_len int 75 The length displayed text is condensed down to

Styles

Keyword Type Default Explanation
dt_styles dict None

dictionary of styles to be
applied to a list of ids
- example: {“warning” :
[1,3,6„9], “alert” :
[2,10,13]}

dt_col_widths dict None

dictionary of columns to
apply a width to
- example: {1 : 15, 2 :
20}

Other Features

Keyword Type Default Explanation
dt_double_scroll bool False

Render double scroll bars
(top+bottom), only
available
with set-
tings.ui.datatables_responsive=False

Response Parameters

to be written

3.6. User Interface Elements 47

Eden ASP

Deployment Settings

to be written

3.6.4 Card Lists

3.7 Tools

The core.tools library provides a number of tools for common application tasks, e.g. representing data, handling date
and time, or importing data.

This section describes the tools, and their most relevant functions.

3.7.1 Bulk Importer

The BulkImporter is a tool to run a series of data import tasks from a configuration file. It is most commonly used
during the first run of the application, to pre-populate the database with essential data (a process called prepop).

The individual import task handlers of the BulkImporter can also be used standalone, e.g. in upgrade/maintenance
scripts, or for database administration from the CLI.

Configuration File

Configuration files for the BulkImporter are CSV-like files that must be named task.cfg, and are typically placed in
the template directory to be picked up by the first-run script.

Listing 9: Example of tasks.cfg

Roles
*,import_roles,auth_roles.csv
GIS
gis,marker,gis_marker.csv,marker.xsl
gis,config,gis_config.csv,config.xsl
gis,hierarchy,gis_hierarchy.csv,hierarchy.xsl
gis,layer_feature,gis_layer_feature.csv,layer_feature.xsl

Tip: This file format differs from normal CSV in that it allows for comments, i.e. everything from # to the end of the
line is ignored by the parser.

Each line in the file specifies a task for the BulkImporter. The general format of a task is:

<prefix>,<name>,<filename>,<xslt_path>

By default, tasks is the S3CSV import handler (import_csv). In this case, the task parameters are:

48 Chapter 3. Reference Guide

Eden ASP

Parameter Meaning
prefix The module prefix of the table name (e.g. org)
name The table name without module prefix (e.g. organisa-

tion)
filename

- the source file name (if located in the same directory
as tasks.cfg), or
- a file system path relative to modules/templates, or
- an absolute file system path, or
- a HTTP/HTTPs URL to fetch the file from

stylesheet

- the name of the transformation stylesheet (if located
in static/formats/s3csv/<prefix>), or
- a file system path relative to static/formats/s3csv, or
- a file system path starting with ./ relative to the
location of the CSV file

Import Handlers

It is possible to override the default handler for a task with a prefix *, and then specifying the import handler with the
name parameter, i.e.:

*,<handler>,<filename>,<arg>,<arg>,...

In this case, the number and meaning of the further parameters depends on the respective handler:

3.7. Tools 49

Eden ASP

Handler Task Format, Action
import_xml

*,import_xml,<filename>,<prefix>,<name>,
<dataformat>,<source_type>

- import XML/JSON data using
static/formats/<dataformat>/import.xsl
- source_type can be xml or json

import_roles

*,import_roles,<filename>

- import user roles and permissions from CSV with a
special format

import_users

*,import_roles,<filename>

- import user accounts with special pre-processing of
the data

import_images

*,import_images,<filename>,tablename,
keyfield,imagefield

- import image files and store them in record of the
specified table
- source file is a CSV file with columns id and file
- records are identified by keyfield matching the id in
the source file

schedule_task

*,schedule_task,,taskname,args,vars,params

- schedule a task with the scheduler
- args, vars and params are JSON strings, but can use
single quotes
- args (list) and vars (dict) are passed to the task
function
- params (dict) specifies the task parameters, e.g.
frequency of execution
- second task parameter (filename) is empty here (not a
typo)!

It is possible to run the import task handlers standalone, e.g.:

50 Chapter 3. Reference Guide

Eden ASP

Listing 10: Running a task handler function standalone

from core import BulkImporter
path = os.path.join(current.request.folder, "modules", "templates", "MYTEMPLATE", "auth_
→˓roles.csv")
error = BulkImporter.import_roles(path)

The arguments for the handler function are the same as for the task line in the tasks.cfg (except * and handler name of
course). All handler functions return an error message upon failure (or a list of error messages, if there were multiple
errors) - or None on success.

Note: When running task handlers standalone (e.g. in a script, or from the CLI), the import result will not automati-
cally be committed - an explicit db.commit() is required.

Task Runner

The task runner is a BulkImporter instance. To run tasks, the perform_tasks method is called with the path where
the tasks.cfg file is located:

from core import BulkImporter
bi = BulkImporter()

path = os.path.join(current.request.folder, "modules", "templates", "MYTEMPLATE")
bi.perform_tasks(path)

Important: The task runner automatically commits all imports - i.e. perform_tasks cannot be rolled back!

Template-specific Task Handlers

It is possible for templates to add further task handlers to the BulkImporter, e.g. to perform special (import or other)
tasks during prepop.

Listing 11: Template-specific task handler for the BulkImporter, in con-
fig.py

Define the task handler:
- must take filename as first argument
- further arguments are freely definable, but tasks must match
this signature
def special_import_handler(filename, arg1, arg2):

...do something with filename and args

Configure a dict {name: function} for template-specific task handlers:
settings.base.import_handlers = {"import_special": special_import_handler}

This also allows to override existing task handlers with template-specific variants.

With this, tasks for the new handler can be added to tasks.cfg like:

3.7. Tools 51

Eden ASP

*,import_special,<filename>,<arg1>,<arg2>

Note: When received by the handler, the filename will be completed with a path, (see interpretation of filename in
tasks.cfg). All other parameters are passed-in unaltered.

However, the filename parameter can be left empty, and/or get ignored by the task handler, if a file name is not required
for the task.

52 Chapter 3. Reference Guide

CHAPTER

FOUR

HOW TO DEPLOY EDEN ASP APPLICATIONS

Eden ASP is normally deployed behind a separate front-end web server (e.g. nginx) using WSGI/uWSGI to plugin
web2py. This section describes how to setup a production instance of an Eden ASP application on a Debian server.

53

Eden ASP

54 Chapter 4. How to deploy Eden ASP applications

CHAPTER

FIVE

EXTENDING EDEN ASP

5.1 Implementing Controllers

5.1.1 Basic Concepts

CRUDRequest

5.1.2 Implementing CRUD Controllers

crud_controller

prep

postp

5.2 Implementing Data Models

5.2.1 Basic Concepts

Model Loader s3db

Resources

Components

Super-Entities

Field Selectors and Resource Queries

5.2.2 Defining Tables

Subclassing DataModel

model()

defaults()

55

Eden ASP

mandatory()

Exposing names

Defining Tables

5.2.3 Table Configuration

CRUD Hooks

Linking to Super-Entities

CRUD Strings

Adding Components

Adding Methods

5.2.4 Reusable Fields

Common Field Functions

Meta-Fields

Implementing Reusable Fields

5.2.5 Field Representation

Common Representation Functions

Foreign Key Bulk Representation (S3Represent)

5.3 Adding new themes

5.4 Adding new Form Widgets

56 Chapter 5. Extending Eden ASP

CHAPTER

SIX

INDICES AND TABLES

• genindex

57

Eden ASP

58 Chapter 6. Indices and tables

INDEX

A
auth.s3_has_role()

built-in function, 23
auth.s3_logged_in()
built-in function, 23

B
built-in function
auth.s3_has_role(), 23
auth.s3_logged_in(), 23
s3db.add_components(), 21
s3db.clear_config(), 21
s3db.configure(), 20
s3db.get_config(), 21
s3db.get_method(), 22
s3db.set_method(), 22
s3db.table(), 20

D
DataTable (built-in class), 40

H
html() (DataTable method), 40

J
json() (DataTable method), 40

S
s3db.add_components()

built-in function, 21
s3db.clear_config()
built-in function, 21

s3db.configure()
built-in function, 20

s3db.get_config()
built-in function, 21

s3db.get_method()
built-in function, 22

s3db.set_method()
built-in function, 22

s3db.table()
built-in function, 20

59

	Introduction into Eden ASP
	Basic Concepts
	Client and Server
	Web2Py and PyDAL
	Application Structure
	The Request Cycle

	Building Applications
	Setting up for Development
	Prerequisites
	Installing web2py
	Installing Eden ASP
	Configuring Eden ASP
	First run
	Starting the server
	Using PostgreSQL

	About Templates
	Global Config
	Deployment Settings
	Templates
	Cascading Templates

	About Controllers
	Basic Request Routing
	CRUD Controllers
	Resources and Components
	CRUD URLs and Methods
	Default REST API
	Component URLs

	Implementing Templates
	Settings
	Customising resources
	Customising controllers
	Pre-populating data
	Menus
	Configuring Auth

	Advanced Topics
	Themes
	Models in templates
	Re-routing controllers

	Reference Guide
	The current Object
	Services
	Model Loader s3db
	Accessing Tables and Objects
	Table Settings
	Declaring Components
	URL Method Handlers
	CRUD Callbacks

	Authentication and Authorisation auth
	User Status and Roles
	Access Permissions

	Geospatial Information and Maps gis
	Messaging msg
	XML Encoder/Decoder xml

	Settings
	Built-in Data Models
	Core Models
	Persons and Groups - pr
	Database Structure
	Description

	Organisations and Sites - org
	Human Resources
	User Accounts and Roles - auth
	Geospatial Information and Maps - gis
	Document Management - doc

	Extensions
	Content Management
	Deployment Settings

	Project Tracking
	Deployment Settings

	Business Data Models
	Disease Tracking
	Training Courses and Events

	Standard CRUD Methods
	Data Tables
	Form-based CRUD
	Create
	Read
	Update
	Delete

	Map
	Pivottable Reports
	Timeplot
	Configuration
	Relative Time Expressions

	Summary
	Organizer
	Spreadsheet Importer

	User Interface Elements
	Form Widgets
	Filter Widgets and Forms
	DataTable
	Overview
	Example
	Build Parameters
	Basic configuration
	Pagination
	Searching
	Row Actions
	Bulk Actions
	Grouping
	Contents Rendering
	Styles
	Other Features

	Response Parameters
	Deployment Settings

	Card Lists

	Tools
	Bulk Importer
	Configuration File
	Import Handlers
	Task Runner
	Template-specific Task Handlers

	How to deploy Eden ASP applications
	Extending Eden ASP
	Implementing Controllers
	Basic Concepts
	CRUDRequest

	Implementing CRUD Controllers
	crud_controller
	prep
	postp

	Implementing Data Models
	Basic Concepts
	Model Loader s3db
	Resources
	Components
	Super-Entities
	Field Selectors and Resource Queries

	Defining Tables
	Subclassing DataModel
	model()
	defaults()
	mandatory()
	Exposing names
	Defining Tables

	Table Configuration
	CRUD Hooks
	Linking to Super-Entities
	CRUD Strings
	Adding Components
	Adding Methods

	Reusable Fields
	Common Field Functions
	Meta-Fields
	Implementing Reusable Fields

	Field Representation
	Common Representation Functions
	Foreign Key Bulk Representation (S3Represent)

	Adding new themes
	Adding new Form Widgets

	Indices and tables
	Index

